

晶体管检测仪 TRANSISTOR TESTER

用户须知 >>>	01
一、产品简介 >>>	01
二、面板介绍、>>>	02
三,参数介绍 >>>	03
四、操作说明 >>>	05
五、固件升级 >>>	07
六、注意事项 >>>	08

七、生产信息 >>> 09

CATALOG

NOTICE TO USERS	10
1.PRODUCT INTRODUCTION >>>	10
2.PANEL INTRODUCTION >>>	11
3.PARAMETER INTRODUCTION	12
4.OPERATING INSTRUCTIONS >>>	14
5.FIRMWARE UPDATE	17
6.PRECAUTIONS >>>	18
7.CONTACT US	19

СОДЕРЖАНИ

Введение >>> 20

1.Описание устройства >>> 20

2.Описание элементов управления >>> 21

3.Характеристики устройства	>> >	22

4.Описание основных операций >>> 24

5.Обновление встроенного ПО	>>>	28
-----------------------------	-----	----

6.Меры предосторожности	>>>	29
-------------------------	-----	----

7.Контактная информация >>> 30

1.INTRODUÇÃO DO PRODUTO >>> 31

2.INTRODUÇÃO DO PAINEL >>> 32

3.INTRODUÇÃO DOS PARÂMETROS >>>> 33

4.INSTRUÇÕES DE FUNCIONAMENTO >>> 35

5.ATUALIZAÇÃO DO FIRMWAR	>>> 38
--------------------------	--------

6.PRECAUÇÕES	>>>	39
--------------	-----	----

7.7.CONTATE-NOS	40
-----------------	----

用户须知

- ●本手册详细介绍了产品的使用方法、注意事项以及相关事项, 在使用产品之前,请详细阅 读手册,以便发挥产品的最佳性能。
- 不要在易燃、易爆的环境中使用仪器。
- ●仪器更换的废旧电池和报废的仪器不可与生活垃圾一同处理 请按国家或者当地的相关法律规定处理。
- ●当仪器出现任何质量问题或者对使用仪器有疑问时,可联系 "菲尼瑞斯-FNIRSI"在线客服或厂家,我们将在第一时间为您 解决。

一、产品简介

二、面板介绍

锁紧座

(123晶体管测试区域,

KAA稳压二极管测试区域)

三、参数介绍

【3.1】主机参数

产品型号	LCR-P1	
显示屏	1.44寸	
电池容量	300mAH锂电池	
充电规格	USBType-C, 5V/1A	
产品尺寸	71×87×28mm	

【3.2】元器件测试参数

类目	范围	说明
三极管	10<β<600	放大倍数hfe,基极-发射极压 Ube,Ic/Ie,集电极-发射极反 向截止电流Iceo,Ices,保护二 极管正向压降Uf
二极管	正向压降<4.5V	正向压降,结电容,反向漏电流
稳压二极管	0.01-4.5V 0.01-32V	(1-2-3测试区)正向压降,反向 击穿电压 (K-A-A测试区)反向击穿电压

类目	范围	说明
场效应管	JFET IGBT MOSFET	· 栅极电容Cg,Vgs下的漏极电流 ld,保护二极管正向压降Uf ·Vgs下的漏极电流ld,保护二极管 正向压降Uf ·开启电压Vt,栅极电容Cg,漏源 电阻Rds,保护二极管正向压降Uf
单向可控硅 双向可控硅	开启电压<5V 门极触发 电流<6mA	门极电压
电容	25pF~100mF	电容值,损耗系数Vloss,内阻ESR
电阻	0.01Ω-50ΜΩ	电阻值
电感	10uH-1000uH	电感值,直流电阻
电池	0.1-4.5V	电压值,正负极性
红外 遥控 解码	NEC协议红外码	显示用户码和数据码,并显示对 应的红外波形

四、操作说明

【4.1】开关机】

开机:关机状态下按TEST键进入 测试界面 关机:在非测量页面长按TEST键

关机:在非测量页面长按**TEST**键 关机

【4.2】电容、电阻、电感、二极管、电池测试等两脚元器件测试

元器件引脚插入两个不同位号的测试孔(1、3或1、2或2、3),下压锁 紧杆,按TEST键进行测试,会测量结束会显示对应的测试参数几 及引脚顺序

【4.3】三极管、MOS管等三脚元器件测试

三个引脚分别插入1、2、3位号测试孔,下压锁紧杆,按TEST键进 行测试会测量结束会显示对应的测试参数以及引脚顺序

【4.4】稳压二极管测试

按Zener键,进入稳压二极管测试模式,稳压二极管正极插入A 位号测试孔,负极插入K位号测试孔(接反测试有插反提示)下压 锁紧杆,按TEST键进行测试会显示对应的测量结果

6

上拨模式切换拨杆,进入红外解码 测试模式,对准红外接收器发送红 外信号,机器会自动进行解码,解 码完成后显示地址码和用户码以 及波形

五、固件升级

 ◆关机状态下依次长按Zener键(高压键)和TEST键(开机键)进 入固件升级界面
 ●通过Type-C线连接电脑

●选择固件和当前设备的COM号,点击开始升级

●升级成功自动重启

设备升级界面

连接电脑界面

六、注意事项

- ●未给电容放电直接测量在插入锁紧瞬间机器会给电容放电 产生火花。该功能只是起到防止忘记放电保护作用,正确使 用还是建议先给电容手动放电在测试。
- ●在非测量过程中,123锁紧接口属于导通状态,禁止电池直 接插入。
- 副量元器件参数不在测试范围测试结果可能会出现非正确

七、生产信息

产品名称:晶体管检测仪

品牌/型号:FNIRSI/LCR-P1

服务电话:0755-28020752

服务邮箱:support@fnirsi.com

商务邮箱:business@fnirsi.com

生产商:深圳市菲尼瑞斯科技有限公司

地址:广东省深圳市龙华区大浪街道伟华达工业园C栋西边8楼

网址:www.fnirsi.cn

执行标准:SJ/T 10333-1993

NOTICE TO USERS

- This manual provides detailed instructions on how to use the product, precautions, and relevant information. Please read the manual carefully before using the product to ensure optimal performance.
- Do not use the instrument in flammable or explosive environments.
- Dispose of used batteries and discarded instruments according to national or local regulations; they should not be disposed of with household waste.
- If there are any quality issues with the instrument or if you have any questions about its use, please contact "FNIRSI" online customer service or the manufacturer. We will resolve your issue promptly.

1.PRODUCT INTRODUCTION

The Transistor Tester is a high-precision, multifunctional electronic testing device designed specifically for electronic engineers, technicians, and enthusiasts.This device is intended for detecting and analyzing the performance and characteristics of semiconductor components such as transistors, diodes, triodes, and field-effect transistors (FETs).Equipped with a color screen, it allows for multi-parameter measurement of various components, automatically identifies the type and pin arrangement of the tested component, simplifying the operation process and enhancing testing efficiency.

2.PANEL INTRODUCTION

Locking Seat

(123 transistor testing area,

KAA voltage regulator diode testing area)

3.PARAMETER INTRODUCTION

[3.1] Host parameters

Product Model	LCR-P1	
Flouder	LCINTI	
Display Screen	1.44 inches	
Battery Capacity	300mAh lithium battery	
Charging Specification	USB Type-C, 5V/1A	
Product Size	71×87×28mm	

[3.2] Component Test Parameters

Category	Range	Explanation	
Transistor	10<β<600	DC current gain hfe, base-emitter voltage drop Ube, Ic/Ie, collector -emitter reverse cutoff current Iceo, Ices, forward voltage drop Uf.	
Diode	Forward voltage drop<4.5V	Forward voltage drop, junction capacitance, reverse leakage current.	
Voltage Regulator Diode	0.01-4.5V 0.01-32V	(1-2-3 Testing Area) Forward voltag drop, reverse breakdown voltage. (K-A-A Testing Area) Revers breakdown voltage.	

Category	Range	Explanation		
Field- Effect Transistor	JFET IGBT MOSFET	Gate capacitance Cg, drain current Id at Vgs, forward voltage drop of protective diode Uf. id at Vgs, forward voltage drop of protective diode Uf. -Threshold voltage Vt, gate capacitance Cg, drain-source resistance Rds, forward voltage drop of protective diode Uf. }		
Unidirect- ional SCR Bidirect- ional SCR	Turn-on voltage < 5V, gate trigger current < 6mA	Gate voltage		
Capacitor	25pF~100mF	Capacitance value, loss coefficient Vloss, equivalent series resistance ESR.		
Resistor	0.01Ω-50ΜΩ	Resistance value.		
Inductor	10uH-1000uH	Inductance value, DC resistance.		
Battery	0.1-4.5V	Voltage value, polarity.		
Infrared Remote Control Decoding	NEC protocol infrared code	Display user code and data code, and display corresponding infrared waveform.		

*SCR:Silicon Controlled Rectifier

4.OPERATING INSTRUCTIONS

[4.1] Power On / Power Off

Power On: Press the TEST button while in the power-off state to enter the testing interface.

Power Off: Long press the TEST button on any non-measurement screen to power off.

[4.2] Testing of Two-pin Components such as

Capacitors, Resistors, Inductors, Diodes, and Batteries

Insert the component pins into two different numbered test holes (e.g., 1, 3 or 1, 2 or 2, 3), press down and lock the clamping rod, then press the TEST button to initiate testing. Upon completion of the measurement, the corresponding test parameters and pin sequence will be displayed.

[4.3] Testing of Three-pin Components such as

Transistors, MOSFETs, etc

Insert the three pins into test holes numbered 1, 2, and 3 respectively. Press down and lock the clamping rod, then press the TEST button to initiate testing. Upon completion of the measurement, the corresponding test parameters and pin sequence will be displayed.

[4.4] Testing of Zener Diodes

Press the Zener button to enter Zener diode testing mode. Insert the anode of the Zener diode into test hole A, and the cathode into test hole K (there will be a reverse connection prompt). Press down and lock the clamping rod, then press the TEST button to initiate testing. The measurement results will be displayed accordingly.

[4.5] Infrared Decoding

Switch the mode selection switch upward to enter Infrared decoding test mode. Aim the device at the Infrared receiver and send an Infrared signal. The device will automatically decode the signal. After decoding, it will display the address code, user code, and waveform.

5.FIRMWARE UPDATE

- Power off the device, then press and hold the Zener button (high voltage button) followed by the TEST button (power button) to enter the firmware upgrade interface.
- Connect to a computer via Type-C cable.
- Select the firmware and COM port of the current device, then click 'Start Upgrade'.
- •The upgrade will succeed and the device will automatically restart.

Upgrade Interface

Connect Computer Interface

6.PRECAUTIONS

- When measuring capacitors without prior discharge, sparks may occur at the moment of insertion and locking, which can discharge the capacitor. This function serves as a safety measure to prevent forgetting to discharge capacitors before testing. However, it is still recommended to manually discharge capacitors before testing for proper usage.
- During non-measurement processes, the 1-2-3 locking interface is in a conductive state, which prohibits direct insertion of batteries.
- Testing component parameters outside the specified range may result in incorrect identification of component types.

7.CONTACT US

Any FNIRSI's users with any questions who comes to contact us will have our promise to get a satisfactory solution +an extra 6 months warranty to thanks for your support!

By the way, we have created an interesting community, welcome to contact FNIRSI staff to join our community.

Shenzhen FNIRSI Technology Co., LTD.

Add.: West of Building C , Weida Industrial Park , Dalang Street , Longhua District , Shenzhen , Guangdong , China Tel: 0755-28020752

Web:www.fnirsi.cn

E-mail:business@fnirsi.com (Business)

E-mail:service@fnirsi.com(Equipment Service)

Введение

- Пожалуйста, прочитайте внимательно руководство пользователя перед использованием продукта. Данное руководство содержит подробное описание по всем функциям прибора.
- Не используйте прибор в легковоспламеняющихся и взрывоопасных средах, это может привести к его выходу из строя.
- Отработанные элементы питания нельзя выбрасывать вместе с быговыми отходами. Пожалуйста, сдайте их в ближайший пункт приема использованных аккумуляторов для дальнейшей утилизации.
- В случаи возникновения проблем с качеством либо у вас имеются вопросы по его использованию, пожалуйста, свяжитесь со службой поддержки клиентов FNIRSI, и мы с радостью поможем их решить.

1.Описание устройства

Транзисторный тестер — это высокоточное многофункциональное электронное испытательное устройство. разработанное инженеров-электроншиков. специально лля техников энтузиастов. Устройство предназначено для обнаружения и анализа работы полупроводниковых компонентов, таких как транзисторы, диоды, триоды и полевые транзисторы (FET). Оснашенный цветным экраном. OH позволяет проводить многопараметрические измерения различных компонентов. автоматически и расположение определяет тип выволов полупроводниковых компонентов. Протестированный компонент. упрошает процесс эксплуатации и повышает эффективность тестирования.

2. Описание элементов управления

Интерфейс для зарядки

Зажимная кроватка

(123 для транзисторов,

КАА – зона тестирования диодов)

3.Характеристики устройства

[3.1] Основные параметры

Модель	LCR-P1	
Размеры экрана	1,44 дюйма	
Параметры батареи	300 мАч литиевая батарея	
Параметры для зарядки	USB Type-C, 5B/1A	
Размеры	71×87×28mm	

[3.2] Параметры тестирования компонентов

Компонент	Диапазон	Описание	
Транзистор	10<β<600	Усиление по постоянному току hfe, падение напряжения база-эмиттер Ube, Ic/le, обратный ток отсечки коллектор-эмиттер Iceo, Ices, прямое падение напряжения Uf.	
Диод	Прямое падение напряжения <4,5В	Прямое падение напряжения, емкость перехода, обратный ток утечки.	
Стабилитрон 0.01-4.5V 0.01-32V 0.01-32V		Прямое падение напряжения, обратное напряжение пробоя. (Зона тестирования 1-2-3) Обратное напряжение пробоя. (Зона тестирования К-А-А)	

Компонент	Диапазон	Описание		
Эффект поля полевого транзистора	JFET IGBT MOSFET	• Емкость затвора Сg, ток стока ld при Vs, прямое падение напряжения защитного диода Uf. • ld на Vgs, прямое падение напряжения защитного диода Uf. • Пороговое напряжение Vt, емкость затвора Cg, сопротивление сток-исток Kds, прямое падение напряжения защитного диода Uf.		
Однонаправ- ленный SCR Двунаправ- ленный SCR	Напряжение включения <5 В Ток срабатывания затвора <6 мА	Напряжение на затворе		
Емкость	25pF~100mF	Значение емкости, коэффициент потерь. Эквивалентное последо- вательное сопротивление ESR.		
Сопротивление	0.01Ω-50ΜΩ	Значение сопротивления (резистора		
Индуктивность	10uH-1000uH	Величина индуктивности, сопротивление постоянному току.		
Источники питания	0,1-4,5B	Значение напряжения, полярность		
ИК приемник	Código de infravermelhos do protocolo NEC	Расшифровка кодов пользователя s и кода данных, а также форма инфракрасного сигнала.		

*SCR: Выпрямитель с кремниевым управлением

4.Описание основных операций

[4.1] Включение и выключение устройства

Включение питания: Нажмите кнопку TECT, при выключенном устройстве, чтобы войти в интерфейс тестирования.

Выключение питания: Длительное нажатие кнопки TECT на любом экране, не предназначенном для измерения, отключает питание.

[4.2] Тестирование двухконтактных компонентов,

таких как конденсаторы, резисторы,

катушки индуктивности, диоды и батареи.

Вставьте контакты компонентов в два разных пронумерованных отверстия для тестирования (например: 1, 3 или 1, 2 или 2, 3), нажиите на рычаг для фиксации зажима, затем нажмите кнопку ТЕСТ. По окончании измерения на дисплее отобразятся соответствующие измеренные параметры и последовательность выводов.

[4.3] Тестирование трехконтактных компонентов,

таких как транзисторы, MOSFETы, и т.п.

Вставьте три контакта исследуемого компонента в тестовые отверстия, пронумерованные 1, 2 и 3 соответственно. Нажмите рычаг и зафиксируйте зажим, затем нажмите кнопку ТЕСТ, чтобы начать процесс тестирование. По окончании измерения на дисплее отобразятся измеренные параметры и последовательность контактов.

[4.4] Тестирование стабилитронов

Нажмите кнопку Zener, чтобы перейти в режим тестирования стабилитрона. Вставьте анод стабилитрона в тестовое отверстие A, а

катод - в тестовое отверстие К (появится запрос на подключение в обратном порядке). Нажмите рычаг и зафиксируйте зажим, затем нажмите кнопку TECT, чтобы начать процесс тестирование. Результаты измерений будут отображены следующим образом.

[4.5] Декодирование ИК сигналов

Infrared Decoding

Установите переключатель выбора режима работы в верхнее положение, для перехода в режим декодирования инфракрасного сигнала. Наведите устройство на инфракрасный приемник и отправьте инфракрасный сигнал. Устройство автоматически декодирует сигнал. После декодирования на дисплее отобразятся код адреса, код

пользователя и форма сигнала.

27

5.Обновление встроенного ПО

- Выключите устройство, затем нажмите и удерживайте кнопку Zener, а затем кнопку TECT, чтобы войти в режим обновления встроенного ПО.
- Подключите устройство к компьютеру с помощью кабеля для передачи данных.
- Выберите встроенное ПО и СОМ-порт текущего устройства, затем нажмите "Начать обновление".
- После завершения обновления встроенного ПО устройство автоматически перезагрузится.

6.Меры предосторожности

- При тестировании конденсаторов без предварительной разрядки в момент их установки и фиксации могут возникнуть искры, которые приведут к его разрядке. Это является защитной функцией, позволяющей разрядить конденсаторы перед тестированием. Однако, перед проверкой правильно все же вручную разрядить конденсаторы.
- Во время процессов, не связанных с измерениями, блокирующий интерфейс 1-2-3 находится в замкнутом состоянии, что не позволяет напрямую устанавливать батареи.
- Проверка параметров компонентов, выходящих за пределы допустимых диапазонов, может привести их неправильной идентификации.

7.Контактная информация

Все владельцы устройств FNIRSI у которых возникли любые вопросы по их использованию, и которые обратятся к нам, получат гарантированную поддержку с нашей стороны для разрешения ваших вопросов по нашим продуктам. В дополнение мы продлим вашу текущую гарантию на дополнительные 6 месяцев в благодарность за ваше обращение.

Кстати, мы создали интересное сообщество, в котором вы сможете напрямую связаться с разработчиками FNIRSI и предложить свои идет. Добро пожаловать в наше сообщество.

Shenzhen FNIRSI Technology Co., LTD. Add.: West of Building C, Weida Industrial Park, Dalang Street, Longhua District, Shenzhen, Guangdong, China Tel: 0755-28020752 Web:www.fnirsi.cn E-mail:business@fnirsi.com (Business) E-mail:service@fnirsi.com(Equipment Service)

AVISO AOS UTILIZADORES

- Este manual fornece instruções detalhadas sobre como utilizar o produto, precauções e informações relevantes. Leia atentamente o manual antes de utilizar o produto para garantir um desempenho ótimo.
- Não utilize o instrumento em ambientes inflamáveis ou explosivos.
- Elimine as pilhas usadas e os instrumentos deitados fora de acordo com os regulamentos nacionais ou locais; não devem ser eliminados juntamente com o lixo doméstico.
- Se houver algum problema de qualidade com o instrumento ou se tiver dúvidas sobre a sua utilização, contacte quaisquer questões sobre a sua utilização, contacte o serviço de apoio ao cliente ou o fabricante. Resolveremos o seu problema prontamente.

1.INTRODUÇÃO DO PRODUTO

O Testador de Transístores é um dispositivo de teste eletrónico multifuncional de alta precisão, concebido especificamente para engenheiros eletrónicos, técnicos e entusiastas. Este dispositivo destina-se a detetar e analisar o desempenho e as caraterísticas de componentes semicondutores, tais como transístores, díodos, tríodos e transístores de efeito de campo (FET). Equipado com um ecrã a cores, permite a medição de vários parâmetros de componentes. Identifica automaticamente o tipo e a disposição dos pinos do componente testado, simplificando o processo de operação e melhorando a eficiência dos testes.

2.INTRODUÇÃO AO PAINEL

Tomada com bloqueio (123 área de teste dos transístores, KAA área de teste do díodo regulador de tensão)

3.INTRODUÇÃO DOS PARÂMETROS

[3.1] Parâmetros do anfitrião

Modelo do produto	LCR-P1
Ecrã de visualização	1.44 inches
Capacidade da bateria	300mAh lithium battery
Especificação de carregamento	USB Type-C, 5V/1A
Tamanho do produto	71×87×28mm

[3.2] Parâmetros de teste dos componentes

Categoria	Gama	Explicação
Transístor	10<β<600	Ganho de corrente DC hfe, queda de tensão base-emissor Ube, Ic/Ie, corrente de corte inversa coletor-emissor Iceo, Ices, queda de tensão direta Uf.
Díodo	Queda de tensão de avanço <4,5V	Queda de tensão direta, capacitância de junção capacitância, corrente de fuga inversa.
Díodo regulador de tensão	0.01-4.5V 0.01-32V	(Área de teste 1-2-3) Queda de tensão direta queda, tensão de rutura inversa. (Área de teste K-A-A) Tensão de rutura inversa inversa.

Categoria	Gama	Explicação		
Transístor de efeito de campo	JFET IGBT MOSFET	 Capacitância de porta Cg, corrente de drenagem Id a Vgs, queda de tensão para a frente do dido de proteção UL ' Id a Vgs, queda de tensão de avanço do do diodo de proteção Uf. Tensão de limiar Vt, capacitância de porta Cg, resistência dreno-fonte Rds, queda de tensão para a frente queda de tensão para a frente do diodo de proteção Uf. 		
SCR unidirecional SCR bidirecional	Tensão de ativação < 5V, disparo do portão corrente < 6mA	Tensão do portão		
Condensador	25pF~100mF	Valor da capacitância, coeficiente de perda Vloss, resistência equivalente em série ESR.		
Resistência	0.01Ω-50ΜΩ	Valor da resistência.		
Inductor	10uH-1000uH	Valor da indutância, resistência DC.		
Bateria	0.1-4.5V	Valor da tensão, polaridade.		
Descodificação de infravermelhos de controlo remoto	Código de infravermelhos do protocolo NEC	Apresentar o código de utilizador, o código de dados e a forma de onda correspondente.		

*SCR:Retificador controlado por silício

4.INSTRUÇÕES DE FUNCIONAMENTO

[4.1] Ligar / Desligar

Ligar: Premir o botão TEST enquanto estiver no estado desligado para entrar na interface de teste.

Desligar: Premir longamente o botão TEST em qualquer ecrã que não seja de medição para desligar.

[4.2] Teste de componentes de dois pinos,como

condensadores, resistências, indutores, díodos e baterias

Introduzir os pinos do componente em dois orifícios de ensaio com números diferentes (por exemplo, 1, 3 ou 1, 2 ou 2, 3), prima e bloqueie a haste de fixação, e, em seguida, premir o botão TEST para iniciar o teste. Após a conclusão da medição, os parâmetros de teste correspondentes e a e a sequência de pinos correspondentes serão apresentados.

35

[4.3] Teste de componentes de três pinos,

tais como transístores, MOSFETs, etc.

Introduzir os três pinos nos orifícios de teste numerados 1, 2 e 3 respetivamente. Premir para baixo e bloquear a haste de aperto e, em seguida, premir o botão o botão TEST para iniciar o teste. Após a conclusão da medição, os parâmetros de teste correspondentes e a sequência de pinos serão apresentados.

[4.4] Teste de díodos Zener

Premir o botão Zener para entrar no modo de teste do díodo Zener, Insira o ânodo do díodo Zener no orifício de teste A e o cátodo no orifício de teste K (haverá um aviso de ligação inversa). Prima e bloqueie a haste de fixação e, em seguida, prima o botão TEST para iniciar o teste. Os resultados da medição serão apresentados em conformidade.

.5] Descodificação de infravermelhos

Mudar o interrutor de seleção de modo para cima para entrar no modo de teste de descodificação por infravermelhos. Aponte o aparelho para o recetor de infravermelhos e envie um sinal. O aparelho descodifica automaticamente o sinal. Após a descodificação, apresenta o código de endereço, código de utilizador e forma de onda.

5.ATUALIZAÇÃO DE FIRMWARE

- Desligue o dispositivo e, em seguida, prima e mantenha premido o botão Zener (botão de alta tensão) seguido do botão TEST (botão de alimentação) para aceder à interface de atualização do firmware.
- Ligar a um computador através do cabo Type-C.
- Selecione o firmware e a porta COM do dispositivo atual e, em seguida, clique em "Iniciar atualização".
- A atualização será bem-sucedida e o dispositivo reiniciará automaticamente.

Interface de Actualização

IAP Update tool		en	×
сом1 🗸			
1 Select bin	3 Update		
	Wait for bin		

Ligar a Interface do Computador

6.PRECAUÇÕES

- Ao medir condensadores sem descarga prévia, podem ocorrer faíscas no momento da inserção e do bloqueio, o que pode descarregar o condensador. Esta função serve como medida de segurança para evitar o esquecimento de descarregar os condensadores antes do teste. No entanto, recomenda-se a descarga manual dos condensadores antes do teste para uma utilização correta.
- Durante os processos de não medição, a interface de bloqueio 1-2-3 1-2-3 está num estado condutor, o que proíbe a inserção direta a inserção direta de pilhas.
- Testar parâmetros de componentes fora do intervalo especificado pode resultar na identificação incorreta dos tipos de componentes.

7.CONTATE-NOS

Qualquer utilizador do FNIRSI que tenha alguma dúvida e que nos contacte terá a nossa promessa de obter uma solução satisfatória + uma garantia extra de 6 meses para agradecer o vosso apoio! A propósito, criámos uma comunidade interessante, é bem-vindo a contactar o pessoal da FNIRSI para se juntar à nossa comunidade.

Shenzhen FNIRSI Technology Co., LTD. Add.: West of Building C, Weida Industrial Park, Dalang Street, Longhua District, Shenzhen, Guangdong, China Tel: 0755-28020752 Web:www.fnirsi.cn E-mail:business@fnirsi.com (Business) E-mail:service@fnirsi.com(Equipment Service)

下载用户手册&应用软件 Download User manual&APP&Software