January 1998

FAIRCHILD

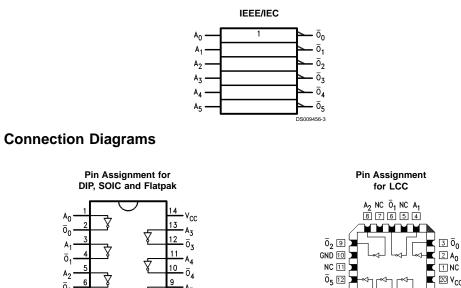
SEMICONDUCTOR

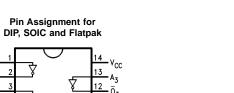
74F04 **Hex Inverter**

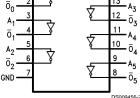
General Description

This device contains six independent gates, each of which performs the logic INVERT function.

Ordering Code:


Commercial	Military	Package	Package Description				
		Number					
74F04PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line				
	54F04DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line				
74F04SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC				
74F04SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ				
	54F04FM (Note 2)	W14B	14-Lead Cerpack				
	54F04LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C				


Features


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol

A₅ 13

14 15 16 17 18

 $\bar{\mathrm{O}}_4$ NC A_4 NC $\bar{\mathrm{O}}_3$

Guaranteed 4000V minimum ESD protection

3 0₀

20 V_{CC}

, 19 A₃

DS009456-1

© 1998 Fairchild Semiconductor Corporation DS009456

A٢

Unit Loading/Fan Out

			54F/74F				
F	Pin Names	Description	U.L.	Input I _{IH} /I _{IL}			
			HIGH/LOW	Output I _{OH} /I _{OL}			
A _n		Inputs	1.0/1.0	20 µA/–0.6 mA			
\overline{O}_n		Outputs	50/33.3	–1 mA/20 mA			

Absolute Maximum Ratings (Note 3)

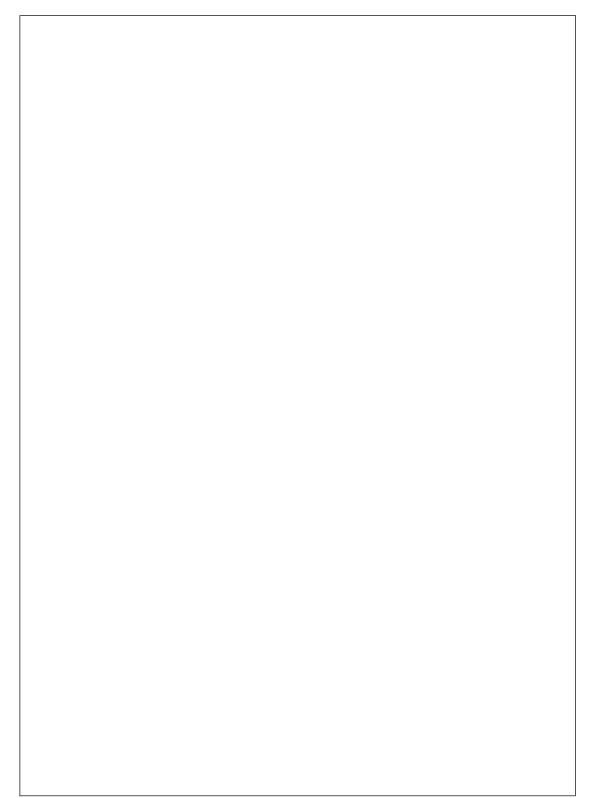
0: T	
Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	–55°C to +175°C
Plastic	–55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 4)	-0.5V to +7.0V
Input Current (Note 4)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to $V_{\rm CC}$
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

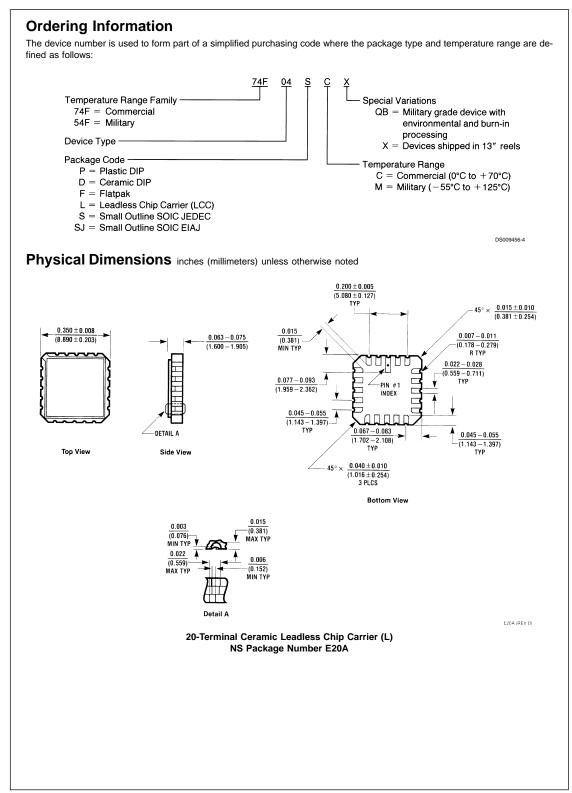
ESD Last Passing Voltage (Min)

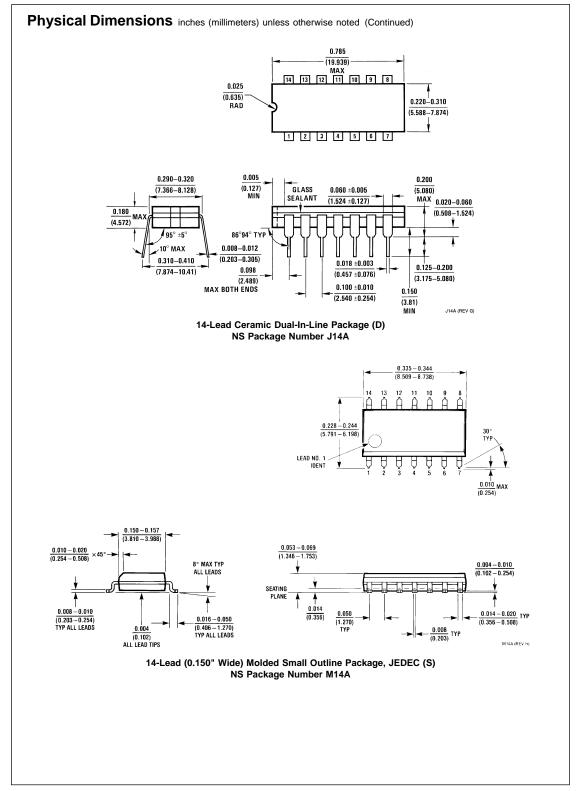
Recommended Operating Conditions

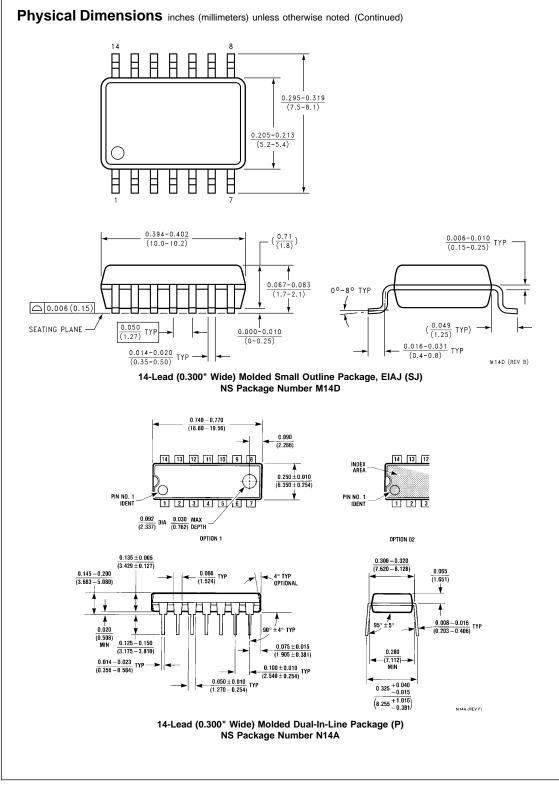
Free Air Ambient Temperature	
Military	–55°C to +125°C
Commercial	0°C to +70°C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V
Note 3: Absolute maximum ratings are values I be damaged or have its useful life impaired. Fun	, ,

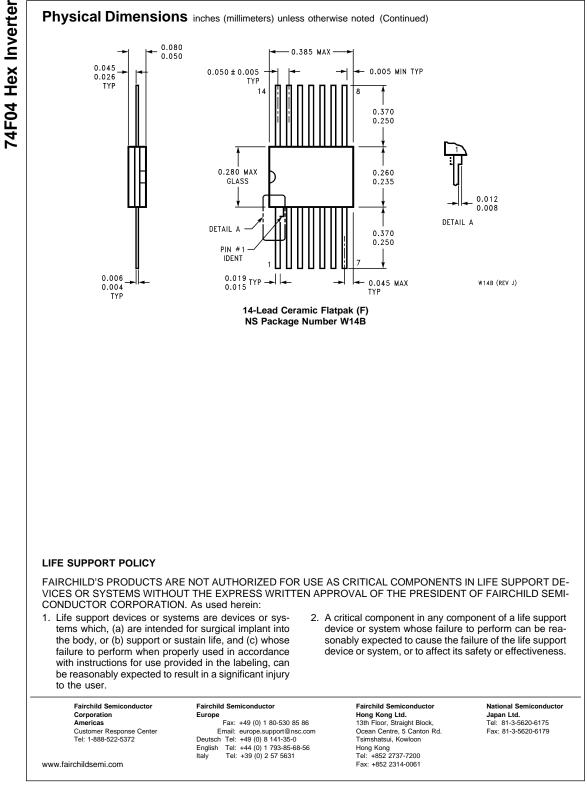
4000V


conditions is not implied. Note 4: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		54F/74F			Units	V _{cc}	Conditions	
			Min	Тур	Typ Max				
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	54F 10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA}$	
	Voltage	74F 10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
		74F 5% $V_{\rm CC}$	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	54F 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage	74F 10% V _{CC}			0.5			I _{OL} = 20 mA	
I _{IH}	Input HIGH	54F			20.0	μA	Max	V _{IN} = 2.7V	
	Current	74F			5.0				
I _{BVI}	Input HIGH Current	54F			100	μA	Max	V _{IN} = 7.0V	
	Breakdown Test	74F			7.0				
I _{CEX}	Output HIGH	54F			250	μA	Max	V _{OUT} = V _{CC}	
	Leakage Current	74F			50				
V _{ID}	Input Leakage	74F	4.75			V	0.0	I _{ID} = 1.9 μA	
	Test							All other pins grounded	
I _{OD}	Output Leakage	74F			3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current							All other pins grounded	
I _{IL}	Input LOW Current	Input LOW Current			-0.6	mA	Max	V _{IN} = 0.5V	
l _{os}	Output Short-Circuit (Current	-60		-150	mA	Max	V _{OUT} = 0V	
I _{ссн}	Power Supply Curren	t		2.8	4.2	mA	Max	V _o = HIGH	
I _{CCL}	Power Supply Curren	t		10.2	15.3	mA	Max	$V_{O} = LOW$	


AC Electrical Characteristics


	Parameter	$74F T_{A} = +25^{\circ}C V_{CC} = +5.0V C_{L} = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		$74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units	Fig. No.
Symbol										
		Min	Тур	Max	Min	Max	Min	Max	1	
t _{PLH}	Propagation Delay	2.4	3.7	5.0	2.0	7.0	2.4	6.0	ns	
t _{PHL}	A_n to \overline{O}_n	1.5	3.2	4.3	1.5	6.5	1.5	5.3		

