NAIS

mm inch

UL File No.: E43028 CSA File No.: LR26550

- A variety of contact arrangements 2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A
- Latching types available
- High sensitivity in small size

100 mW pick-up and 200 mW nominal operating power

- High shock and vibration resistance

Shock: 50 G
Vibration: 10 to 55 Hz at double amplitude of $\mathbf{3 ~ m m}$

- Wide switching range

From $100 \mu \mathrm{~A} 100 \mathrm{mV}$ DC to 4 A 250 V AC

- Low thermal electromotive force

Approx. $3 \mu \mathrm{~V}$

- Dual-In-Line packaging arrangement
- Amber types available

SPECIFICATIONS

Contacts

Arrangement			2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$50 \mathrm{~m} \Omega$
Initial contact pressure			Approx. $12 \mathrm{~g} \mathrm{}$.
Contact material			Gold clad silver alloy
Electrostatic capacitance			Approx. 3pF
Thermal electromotive force (at nominal coil voltage)			Approx. $3 \mu \mathrm{~V}$
Rating (resistive)	Nominal switc	ing capacity	4 A 250 V AC, 3 A 30 V DC
	Maximum sw	tching power	1,000 VA, 90 W
	Maximum swit	ching voltage	250 V AC, 30 V DC (48 VDC at less than 0.5 A)
	Max. switching	g current	4 A (AC), 3 A (DC)
	Min. switchin	g capacity	$100 \mu \mathrm{~A} 100 \mathrm{~m}$ V DC
UL/CSA rating			$\begin{aligned} & 4 \text { A 1/20 HP 125, } 250 \text { V AC, } \\ & 3 \text { A } 30 \text { V DC } \end{aligned}$
Expected life (min. operations)	Mechanical (at 50 cps)		10^{8}
	Electrical (at 20 cpm)	4 A 250 V AC	10^{5}
		3 A 30 V DC	2×10^{5}

Coil (polarized) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Single side stable	Minimum operating power	Approx. 100 mW
	Nominal operating power	Approx. 200 mW
Latching	Minimum set and reset	Approx. 100 mW
	Nominal set and reset	Approx. 200 mW

Remarks

*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{* 3}$ Excluding contact bounce time
${ }^{* 4}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 6}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 49)

Characteristics (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F} 50 \%$ Relative humidity)

Max. operating speed			20 cpm for maximum load, 50 cps for low-level load (1 mA 1 V DC)
Initial insulation resistance*1			10,000 M 2 at 500 V DC
Initial breakdown voltage*2	Between op	open contacts	750 Vrms
	Between con	contact sets	1,000 Vrms
	Between con	contacts and coil	1,500 Vrms
Operate time*3 (at nominal voltage)(at $20^{\circ} \mathrm{C}$)			Max. 15 ms (Approx. 8 ms)
Release time(without diode)*3 (at nominal voltage)(at $20^{\circ} \mathrm{C}$)			Max. 10 ms (Approx. 5 ms)
Set time ${ }^{* 3}$ (latching) (at nominal voltage)(at $20^{\circ} \mathrm{C}$)			Max. 15 ms (Approx. 8 ms)
Reset time ${ }^{* 3}$ (latching) (at nominal voltage)(at $20^{\circ} \mathrm{C}$)			Max. 15 ms (Approx. 8 ms)
Initial contact bounce, max.			1 ms
Temperature rise (at nominal voltage)(at $20^{\circ} \mathrm{C}$)			Max. $35^{\circ} \mathrm{C}$ with nominal coil voltage and at maximum switching current
Shock resistance		Functiona**	Min. $490 \mathrm{~m} / \mathrm{s}^{2}\{50 \mathrm{G}\}$
		Destructive*5	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance		Functiona\|*6	$176.4 \mathrm{~m} / \mathrm{s}^{2}\{18 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3 mm
		Destructive	$235.2 \mathrm{~m} / \mathrm{s}^{2}\{24 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 4 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+149^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 8 g .28 oz

TYPICAL APPLICATIONS

Telecommunications equipment, data processing equipment, facsimiles, alarm equipment, measuring equipment.

ORDERING INFORMATION

(Notes) 1. Standard packing Carton: 50 pcs. Case: 500 pcs.
2. 1 coil latching also available as option. Contact our sales office for details.

TYPES AND COIL DATA at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Single side stable

Type	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Nominal operating current, mA	Coil resistance, $\Omega(\pm 10 \%)$	Inductance, mH	Nominal operating power, mW	Maximum allowable voltage,
SDEB-3V $\left(40^{\circ} \mathrm{C}\right)$								

2 coil latching

Type	Nominal voltage, V DC	Set and reset voltage, V DC (max.)	Nominal operating current, mA	Coil resistance, Ω ($\pm 10 \%$)		Inductance, mH		Nominal operating power, mW	Maximum allowable voltage, V DC ($40^{\circ} \mathrm{C}$)
				Coil I	Coil II	Coil I	Coil II		
SDEB-L2-3V	3	2.1	66.7	45	45	10	10	200	5.5
SDEB-L2-5V	5	3.5	38.5	130	130	31	31	192	9.0
SDEB-L2-6V	6	4.2	33.7	180	180	40	40	200	11.0
SDEB-L2-12V	12	8.4	16.7	720	720	170	170	200	22.0
SDEB-L2-24V	24	16.8	8.4	2,850	2,850	680	680	202	44.0
SDEB-L2-48V	48	33.6	7.4	6,500	6,500	1,250	1,250	355	65.0

Note: Insert 2, 3 or 4 in \square for contact form reguired.

DIMENSIONS

General tolerance: $\pm 0.3 \pm .012$
PC board pattern (Copper-side view)

Tolerance: $\pm 0.1 \pm .003$

SCHEMATIC (Bottom view)

Single side stable Deenergized position

3a1b

2 coil latching
Diagram shows the "reset" position when terminals 6 and 7 are energized. Energize terminals 1 and 12 to transfer contacts.

3a1b

REFERENCE DATA

1. Maximum switching power

4.-(1) Coil temperature rise

Tested Sample: S4-24V, 4 Form A

2. Life curve

4.-(2) Coil temperature rise

Tested Sample: S4-24V, 4 Form A

3. Contact reliability

Condition: 1V DC, 1mA
Detection level 10Ω
Tasted Sample: S4-24V, 10pcs

5.-(1) Operate and release time
(Single side stable type)
Tested Sample: S4-24V, 10pcs
6. Influence of adjacent mounting
$\rightarrow \| \leftrightarrow$

(1) (2) | (3) |
| :--- |
| $\begin{array}{l}\text { (1) \& (3) relays } \\ \text { are energized }\end{array}$ |

Note: When installing an S-relay near another, and there is no effect from an external magnetic field, be sure to leave at least 10 mm .394 inch between relays in order to acheive the performance listed in the catalog.

\longrightarrow Inter-relay distance, mm
7. Thermal electromotive force

8. Effect from an external magnetic field

ACCESSORIES

Specifications

S Relay
Socket, S-PS

Breakdown voltage	$1,500 \mathrm{Vrms}$ between terminals
Insulation resistance	More than $100 \mathrm{M} \Omega$ between terminals at 500 V DC Mega
Heat resistance	$150 \pm 3^{\circ} \mathrm{C}\left(302 \pm 5.4^{\circ} \mathrm{F}\right)$ for 1 hour.
Maximum continuous current	4 A

(Note: Don't insert or remove relays while in the energized condition.)

Dimensions

PC board pattern (Copper-side view)

12-1.6 DIA. HOLE
12-063 DIA. HOLE

Terminal width: 1.3.051
Terminal width: 1.3 .051

Inserting and removing method
Inserting method: Insert the relay as shown in Fig. 1 unit the rib of the relay snaps into the clip of the socket.

Removing method:
(1) Remove the relay straight from the socket holding the shaded portion of the relay as shown in Fig. 2.
(2) When sockets are mounted in close proximity, use a slotted screw driver as shown in Fig. 3.

NOTES

1. Special use of 2 coil latching types: 2 ways can be considered if 2 coil latching types are used as 1 coil latching types. (A) Reverse polarity is applied to the set coil of 2 coil latching type.
(B) By shorting terminals 12 and 7, apply plus to 1 , minus to 6 at set and plus to 6 , minus to 1 at reset. Applied coil voltage should be the same as the nominal.

Operating power will be reduced to onehalf.

Reset position of 2a2b type
2. Soldering operations should be accomplished as quick as possible; within 10 seconds at $250^{\circ} \mathrm{C} 482^{\circ}$ F solder temperature or 3 seconds at $350^{\circ} \mathrm{C}$ $662^{\circ} \mathrm{F}$. The header portion being sealed with epoxy resin, undue subjection to heat may cause loss of seal. Solder should not be permitted to remain on the header.

