
mm inch

UL File No.: E43149 CSA File No.: LR26550

- High breakdown voltage - Between open contacts: 750 Vrms Between contacts and coil: 1500 Vrms
- Surge voltage withstand: 1500 V (Based on part 68, FCC standard)
- 1 coil and 2 coil latching types available
- High sensitivity
- High contact pressure
- Miniature size and low profile - standing only 8.6 mm (. 339 inches) including stand-offs on headers
- High speed - Operate time: Approx. 1 ms

SPECIFICATIONS

Arrangement			1 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$60 \mathrm{~m} \Omega$
Initial contact pressure			Approx. $9 \mathrm{~g} \mathrm{}$.
Contact material			Gold cobalt
Electrostatic capacitance	Contact-Contact		Approx. 3 pF
	N.O. contact-Coil		Approx. 4 pF
	N.C. contact-Coil		Approx. 5 pF
Rating (resistive)	Nominal switching capacity		1 A 20 VDC, 0.3 A 110 VAC
	Max. switching power		$20 \mathrm{~W}, 33 \mathrm{VA}$
	Max. switching voltage		110 V AC, 30 V DC
	Max. switching current		AC 0.3 A, DC 1 A
Expected life (min. operations)	Mechanical (at 50 cps .)		10^{9}
	Electrical	1 A 20 V DC resistive	10^{6}
		0.3 A 110 V AC resistive	10^{6}
		$\begin{aligned} & \hline 0.2 \mathrm{~A} 24 \mathrm{~V} \\ & \text { DC resistive } \end{aligned}$	10^{7}
Coil			
Nominal operating power	Single side stable		78 to 160 mW
	1 coil latching		59 to 99 mW
	2 coil latching		111 to 150 mW

Remarks

*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA (excluding 2 coil latching type)
${ }^{* 3}$ Excluding contact bounce time
${ }^{* 4}$ Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 6}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 49)

Characteristics

Max. operating speed			60 cpm at nominal load 300 cps . at no load
Initial insulation resistance ${ }^{* 1}$			Min. 1,000 M Ω at 500 V DC
Initial breakdown voltage*2	Between open contacts		750 Vrms
	Between live parts and ground		1,000 Vrms
	Between coil and contact		1,500 Vrms
Operate time ${ }^{* 3}$ (at nominal voltage)			Max. 3 ms (Approx. 1 ms)
Release time(without diode) ${ }^{* 3}$ (at nominal voltage)			(Approx. 0.5 ms)
Contact bounce	Single side stable		Approx. 0.5 ms
	1 coil latching		Approx. 0.3 ms
	2 coil latching		Approx. 0.3 ms
Temperature rise (at $20^{\circ} \mathrm{C}$)			Max. $20^{\circ} \mathrm{C}$ (at 120 mW application) Max. $47^{\circ} \mathrm{C}$ (at 500 mW application)
Shock resistance		Functional ${ }^{* 4}$	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G $\}$
		Destructive*5	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance		Functional ${ }^{* 6}$	$196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3.3 mm
		Destructive	$196 \mathrm{~m} / \mathrm{s}^{2}$ \{20 G \}, 10 to 55 Hz at double amplitude of 3.3 mm
Conditions for operation, transport and storage*7 (Not freezing and condens ing at low temperature)		Ambient temp.	$\begin{aligned} & -50^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -58^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 4 g .14 oz

TYPICAL APPLICATIONS

Telecommunications equipment, alarm devices, machine tools, NC machines, automatic warehouse control, conveyors, air-conditioners, pressing machines, textile machinery, elevators, control panels, pin-board programmers, parking meters, industrial robots, detectors, annunciators, optical instruments, business machine, time recorders, cash registers, copiers, vending machines, medical equipment.

ORDERING INFORMATION

TYPES AND COIL DATA at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Single side stable	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)		imum vable e, V DC	Coil resistance, $\Omega(\pm 10 \%)$	Nominal Operating power, mW
DR-3V	2.4	0.3	6.8		94	96
DR-5V	4.0	0.3	10.9		320	78
DR-6V	4.8	0.6	12.8		330	109
DR-12V	9.6	1.2	26.4		1,400	103
DR-24V	17.0	2.4	42.4		3,600	160
DR-48V	33.6	4.8	74.1		11,000	209
1 coil latching	Pick-up voltage, V DC (max.)	Maximumallowablevoltage, V DC		Coil resistance, Ω ($\pm 10 \%$)		Nominal Operating power, mW
DR-L-3V	2.4	8.9			160	56
DR-L-5V	4.0	14.5			420	59
DR-L-6V	4.8	17.4			610	59
DR-L-12V	9.6	33.9			2,300	63
DR-L-24V	17.0	53.8			5,800	99
DR-L-48V	33.6	102.7			21,100	110
2 coil latching	Pick-up voltage, V DC (max.)	Maximum allowable voltage, V DC			$\begin{aligned} & \text { resistance, } \\ & (\pm 10 \%) \\ & \text { il \& Reset coil } \end{aligned}$	Nominal Operating power, mW
DR-L2-3V	2.4	6.3			80	112
DR-L2-5V	4.0	10.6			225	111
DR-L2-6V	4.8	12.0			290	124
DR-L2-12V	9.6	24.6			1,210	119
DR-L2-24V	18.0	43.6			3,840	150
DR-L2-48V	33.6	63.0			7,950	290

DIMENSIONS

Single side stable
1 coil latching

General tolerance: $\pm 0.3 \pm .012$
2 coil latching
Schematic (Bottom view)
2 coil latching

4 Stand-offs

(Reset condition)
Note: With the 2-coil latching type, use with one of the following combinations: No. 3 (+) and No. 14 (-) as the set coil, and No. $6(+)$ and No. $1(-)$ as the reset coil, or No. $6(-)$ and No. $11(+)$ as the set coil, and No. $3(-)$ and No. $14(+)$ as the reset coil.
PC board pattern (Bottom view)

REFERENCE DATA

1. Contact reliability test

Sample: DR-12V, 10 pcs.
Load: $10 \mu \mathrm{~A} 100 \mathrm{mV}$ DC, 50 cps
Detection level: 100Ω

3.-(2) Leaving at high temperature (Change of pick-up and drop-out voltages) Tested Sample: DR-24V, 10pcs
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
Coil applied voltage: 24V DC (Nominal voltage)
Contact carrying current: No current

\longrightarrow Time, hr
5.-(1) Mechanical life

Change of pick-up and drop-out voltage
Sample: DR-12V, 5 pcs.
Frequency: 300 Hz

\longrightarrow No. of operations, $\times 10^{4}$
6.-(2) Electrical life test

Sample 10 pcs. DR-12V
Load: 101 mA 53 V DC relay coil
2 pcs. HG4-DC48V coils in parallel

2. Coil temperature rise

4.-(1) Pick-up/drop-out voltage vs temperature (Single side stable) Sample: DR-5V, 5 pcs.

\longrightarrow Temperature rise, ${ }^{\circ} \mathrm{C}$
5.-(2) Mechanical life

Change of contact resistance
Sample: DR-12V, 5 pcs.
Frequency: 300 Hz

Change of pick-up and drop-out voltage

3.-(1) Leaving at high temperature (Change of contact resistance)
Tested Sample: DR-24V, 10pcs
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
Coil applied voltage: 24 V DC (Nominal voltage)
Contact carrying current: No current

4.-(2) Pick-up/drop-out voltage vs. temperature (1-coil latching) Sample: DR-L-5V, 5 pcs.

6.-(1) Electrical life

Sample: DR-12V, 10 pcs. Load: 1 A 20 V DC resistive

Change of contact resistance

