Data Sheet

Customer:

Product: Metallized Polypropylene Film Capacitor Class X2 – MPX series

Rated Voltage: 275VAC/310VAC

Issued Date: 25-Nov.-2015

Edition: Ver. 1

Record of change

Date	Ver.	Description	Page
25-Nov2015	1		

HITANO ENTERPRISE CORP.

7F-7, No. 3, Wu Chuan 1st Road, New Taipei Industrial Park,

New Taipei City, TAIWAN, R.O.C.

Tel: +886 2 2299 1331 (Rep.)

Fax: +886 2 2298 2466, 2298 2969

Prepared by	Checked by	Approved by	Accepted by (customer)
25-Nov2015	25-Nov2015	25-Nov2015	
Andy Hsu	Hwa Wu	Hwa Wu	

MPX are constructed with metalized polypropylene film dielectric, copper-clad steel lead and epoxy resin coating. They are designed for interference suppression and across-the-line applications. They are suitable for use in situations where failure of the capacitor would not lead to danger of electric shock.

FEATURES:

2.

3.

Self-healing properties.

Good solder ability.

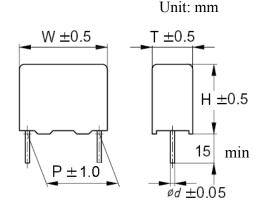
High moisture resistance.

Flame retardant plastic case and epoxy resin.

SPECIFICATION:

- 1. OPERATING TEMPERATURE:-40°C ~+100°C
- 2. CAPACITANCE RANGE:0.001uF~1.0uF
- 3. CAPACITANCE TOLERANCE:±5%(J), ±10%(K)
- 4. RATED VOLTAGE:275VAC(VDE/ENEC,CQC), 310VAC(UL)
- 5. DISSIPATION FACTOR:0.1%MAX AT 1KHz, 20℃

0.3%MAX AT 10KHZ, 20°C


- 6. INSULATION RESISTANCE:
 - A: BETWEEN TERMINALS: >30,000MΩ($C \le 0.33uF$), >10,000MΩ(C > 0.33uF)
 - B: BETWEEN TERMINALS AND CASE: >30,000 MΩ MEASURED AT 100±15VDC, 1 min AND 20°C
- VOLTAGE WITHSTANDING:
 - A: BETWEEN TERMINALS: 4.3UR(VDC) 1 min.
 - B: BETWEEN TERMINALS AND CASE: 2000VAC AT 60Hz, 1 min

RELATED DOCUMENTS:

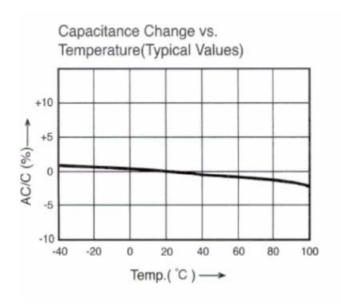
DIN EN 60384-14(VDE 0565 Teil 1-1), IEC60384-14(Ed.3), EN132400,

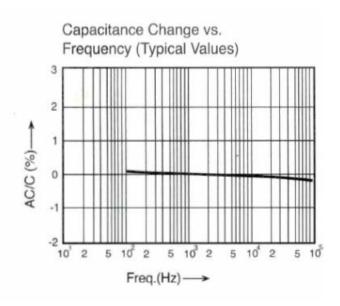
UL 60384-14/CSAE60384-14/-1/IEC 60384-14/-1

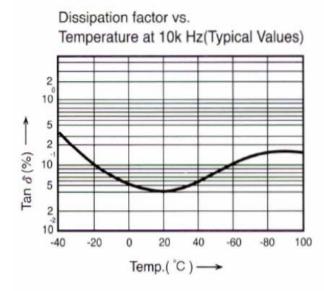
DIMENSION:

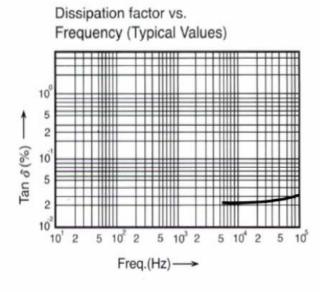
PART NUMBERING:

MPX	<u>104</u>	<u>K</u>	<u>2E</u>	<u>B</u>	<u>A</u>
SERIES	CAPACITANCE	TOL.	W.V.	Package//Lead Style	Extra Code for Size & Lead length
	IN 3DIGITS	$J=\pm 5\%$	2E=275Vac	B = Bulk	A = Smaller Size
	332=0.0033uF	$K=\pm 10\%$	2F=310Vac	C = Lead Cut	S = Smallest Size
	104 = 0.1 uF				Omit if one size
	474=0.47uF				5 = 5mm Lead Length After Cut
	105= 1 uF				


CASE SIZE OF STANDARD PRODUCTS:


RV	275 /310 VAC					RV	275 /310 VAC				
SIZE CAP(uF)	W	Н	Т	P	dØ	SIZE CAP(uF)	W	Н	Т	P	dØ
0.001~ 0.0082	13.0	11.0	5.0	10.0	0.6	0.10	13.0 18.0	12.0 12.0	6.0 6.0	10.0 15.0	0.6 0.8
0.010	13.0 18.0	11.0 11.0	5.0 5.0	10.0 15.0	0.6 0.8	0.15	13.0 18.0	13.0 12.0	7.0 6.0	10.0 15.0	0.6 0.8
0.012 0.015	18.0 18.0	11.0 11.0	5.0 5.0	10.0 15.0	0.8 0.8	0.15 0.22	18.0 18.0	14.5 14.5	8.5 8.5	15.0 15.0	0.8
0.018 0.022	18.0 13.0	11.0 11.0	5.0 5.0	15.0 10.0	0.8 0.6	0.22 0.27	26.5 18.0	16.5 16.0	7.0 10.0	22.5 15.0	0.8
0.022 0.027	18.0 18.0.	11.0 11.0	5.0 5.0	15.0 15.0	0.8 0.8	0.33	18.0 18.0	14.5 16.0	8.5 10.0	15.0 15.0	0.8
0.033	13.0 18.0	11.0 11.0	5.0 5.0	10.0 15.0	0.6 0.8	0.33 0.39	26.5 26.5	17.0 19.0	8.5 10.0	22.5 22.5	0.8
0.039	18.0	11.0	5.0	15.0	0.8	0.47	18.0 26.5	16.0 17.0	10.0 8.5	15.0 22.5	0.8
0.047	13.0 18.0	11.0 11.0	5.0 5.0	10.0 15.0	0.6 0.8	0.47 0.56	32.0 26.5	20.0 19.0	11.0 10.0	27.5 22.5	0.8
0.056	13.0 18.0	11.0 11.0	5.0 5.0	10.0 15.0	0.6 0.8	0.68	26.5 32.0	19.0 20.0	10.0 11.0	22.5 27.5	0.8
0.068	13.0 18.0	11.0 11.0	5.0 5.0	10.0 15.0	0.6 0.8	0.82 1.0	26.5 26.5	21.5 21.5	12.5 12.5	22.5 22.5	0.8
0.082	13.0 18.0	11.0 12.0	5.0 6.0	10.0 15.0	0.6 0.8	1.0	32.5	22.0	13.0	27.5	0.8


SAFETY APPROVALS:


Approve Monogram		Country	Related Standard	Rated Voltage	Capacitance	
				250VAC		
UL		U.S.A.	UL60384-14	275VAC	0.001uF~1.0uF	
OL.				310VAC		
				250VAC		
cUL		Canada	UL 60384-14	275VAC	0.001uF~1.0uF	
COL	C The		CSA E60384-14	310VAC		
			DIN EN60384-14 (VDE			
ENEC	1 /10	EEPCA	0565 Teil 1-1) IEC	275VAC	0.0047uF~1.0uF	
ENEC	(38)		60384-14(ed.3)			
	^		DIN EN60384-14 (VDE			
VDE	DVE	GERMANY	0565 Teil 1-1) IEC	275VAC	0.0047uF~1.0uF	
, DE	VDE	0210/11 11 (1	60384-14(ed.3)			
CQC	COC	CHINA	GB/T 14472-1998	275VAC	0.0047uF~1.0uF	

TEMPERATURE AND FRWQUENCY CHARACTERISTICS:

SPECIFICATION & TEST METHODS						
1.SCOPE	This specification applies to film capacitors of following type. Used in electronic equipment.					
2.PRODUCT NAME	Class X2 Metallized Polypropylene Capacitors for interference suppression					
3.CONSTRUCTION (Dimensions and materials)	Dimensions : Refer to dimensions drawing Materials 1.Element : Metallized polypropylene film. 2.Metal spray : Special solder. (Lead Free) 3.Lead wire : Tinned copper clad-steel wire. (Lead Free) 4.Inner filling : Polyurethane resin. (UL-94V-0 Standard) 5.Outer Case: Plastic Case (UL-94V-0 Standard)					
4.CHARACTERISTICS	Standard atmospheric conditions. Unless otherwise specified , the standard range of atmospheric conditions for making measurements and tests is as follows: Ambient temperature: 15 to 35°C Relative humidity : 45 to 85 % Air pressure : 86 to 106 kpa If there may be any doubt on the results, measurements shall be made within the following limits. Ambient temperature: 20°C±5°C Relative humidity : 60 to 70 % Operating temperature range: -40 to +100°C Operating temperature range is the range of ambient temperature for which the capacitor can be operated continuously at rated voltage.					

5. Electrical characteristics

- **5-1. Rated Voltage:** 275VAC(VDE/ENEC,CQC), 310VAC(UL)
- 5-2. Operating temperature range: $-40 \sim 100^{\circ}$ C
- **5-3.** Capacitance range: 0.001uF to 1.0uF
- **5-4.** Capacitance tolerances: $\pm 5\%$ (J), $\pm 10\%$ (K) (Measured at 1KHz,1V)
- 5-5. Dissipation factor (DF%): Test Instrument: LCR METER:HP-4284A

: 0.1%Max at 1KHz, 20°C 0.3%Max at 10KHZ, 20°C

- **5-6.** Insulation resistance: A: Between terminals: $>30,000M\Omega(C \le 0.33uF) > 10,000M\Omega(C > 0.33uF)$
 - B: Between terminals and case: $>30,000 \text{ M}\Omega$ measured at $100\pm15\text{VDC}$, 1 min and 20°C
- **5-7. Withstand voltage:** A: Between terminals: 4.3UR(VDC) 1 min.

B: Between terminals and case: 2000VAC at 60Hz, 1 min

6.Mechanical characteristics

6-1. Terminal strength (Testing method IEC 68-2-21) Tensile:

(Test Ual)

A load of 10 N(1.0kg) shall be gradually applied to the terminal in the axial direction and held thus for 10 sec.

Bending: (Test Ub)

While a load of 500g applied to the lead wire, the body of the capacitor shall be bent 90° and returned to the original position. This operation shall be conducted in a few seconds. Then the body shall be bent 90° at the same speed in the opposite direction and returned to the original position.

Performance: There shall be no such mechanical damage as terminal damage etc.

7. Endurance characteristics

7-1. Solderability (Testing method IEC 68-2-20 Ta)

Solder temperature : $235^{\circ}\text{C} \pm 2^{\circ}\text{C}$. Immersion time : 2 ± 0.5 sec.

For other procedures refer to JIS C 0050

performance: At least 95% of the circumferential face of lead wire up to immersed level shall be covered with new solder.

7-2. Resistance to soldering heat: (Testing method IEC 68-2-20 Tb) For

other procedures than those specified below refer to JIS C 5102.

Solder bath method

Solder temperature : $260\pm5^{\circ}$ C Immersion time : 10 ± 1 sec.

Thickness of heat shunt

(Printed wiring board) : 1.6 mm

Performance:

Capacitance change Δ C/C : $\leq \pm 3\%$

DF change $\Delta tan \ \delta : \le 0.2\% \ at \ 1 \ KHZ$

7-3. Vibration proof : (Testing method IEC 68-2-6 Fc)

The frequency shall be varied form from 10Hz to 55Hz at 1.5mm amplitude and back to 10Hz In approximately 1 minute intervals.

This motion shall be applied for a period of 2 hours in each of 3 mutually perpendicular directions. During the last 30 min of vibration in each direction, checks shall be made for open or short-circuiting and interruption. For other procedures, refer to JIS C 0040.

Performance:

Bending strength: There shall be no open or short-circuiting and the connections must be stabilized.

Appearance : There shall be no such mechanical damage as terminal damage etc.

7-4. Damp heat (steady state): (Testing method IEC 68-2-3 Ca)

The capacitor shall be stored at a temperature of $40\pm2^{\circ}$ C and relative humidity of 90% to 95% for 1000 hours. And then the capacitor shall be subjected to standard atmospheric conditions for 1.5 \pm 0.5hours, after which measurement shall be made. For other procedures, refer to JIS C 0022.

Performance:

Capacitance change $\Delta \text{ C/C} : \leq \pm 5\%$

DF change $\Delta \tan \delta : \leq 0.2\%$ at 1 KHZ Insulation resistance $:\geq 50\%$ of limit value

7-5. Damp heat with load:

The DC rated voltage shall be applied continuously to the capacitor at a temperature of $40\pm2^{\circ}$ C and a relative humidity of 90 to 95% for 1000 hours.

And then the capacitor shall be subjected to standard atmospheric conditions for 1.5 ± 0.5 hours, after which measurement shall be made. The load resistor in series with the capacitor shall be 20Ω to $1K\Omega$. For other procedures, refer JIS C 0022.

Performance:

Capacitance change $\Delta C/C : \le \pm 5\%$

DF change $\Delta \tan \delta : \leq 0.2\%$ at 1 KHZ Insulation resistance $:\geq 50\%$ of limit value

7-6. Electrical endurance : (Testing method : IEC 60384-2)

125% of rated voltage shall be applied to the capacitor at a temperature of $+100\pm2^{\circ}$ C for 2000 hours. And then the capacitor shall be subjected to standard atmospheric conditions for 1 to 2 hours ,after which measurement shall be made. The load resistor in series with the capacitor shall be 20Ω to $1K\Omega$. For other procedures, refer JIS C5102-1994.

Performance:

Capacitance change $\Delta \text{ C/C} : \leq \pm 5\%$

DF change $\Delta tan \ \delta : \le 0.2\% \ at \ 1 \ KHZ$ Insulation resistance $: \ge 50\% \ of \ limit \ value$

7-6. Temperature Cycle : (Testing method : IEC 60384-2)

Test temperature cycle: Total 5 cycles Each cycle includes: 1. $\pm 20\pm 2\%$ for 3 min.

2. -40 ± 3 °C for 3 min.

3. +20±2°C for 3 min. 4. +100±2°C for 3 min.

5. +20±2°C for 3 min.

And then the capacitor shall be subjected to standard atmospheric conditions for 1.5±0.5 hours, after which measurement shall be made

Performance:

Capacitance change $\Delta \text{ C/C} : \leq \pm 5\%$

DF change $\Delta tan \ \delta : \le 0.2\% \ at \ 1 \ KHZ$ Insulation resistance $: \ge 50\% \ of \ limit \ value$