
DGU QUADRATURE ENCODER 

How to use a quadrature encoder 

 
 

 
A quadrature encoder, also known as an incremental rotary encoder measures the speed and 

direction of 

a rotating shaft. Quadrature encoders can use different types of sensors, optical and hall effect 

are both 

commonly used. The photo shows inside of a Rover 5 gearbox. There are two IR sensors on 

the PCB 

that look at the black and white pattern on one of the gears. No matter what type of sensors 

are used the 

output is typically two square waveforms 90° out of phase as shown below. 

If you only wish to monitor the speed of rotation then you can use either output and simply 

measure the 

frequency. The reason for having two outputs is that you can also determine the direction of 

shaft 

rotation by looking at the pattern of binary numbers generated by the two outputs. 



Depending on the direction of rotation you will get either: 

00 = 0 

01 = 1 

11 = 3 

10 = 2 

or 

00 = 0 

10 = 2 

11 = 3 

01 = 1 

By feeding both outputs into an XOR gate (exclusive OR) you will get a square wave with 

twice the 

frequency regardless of direction. This can be useful as it allows one interrupt pin to monitor 

both 

encoder inputs. 

I was looking at how to write efficient code to convert these binary inputs into a simple 

"forward or 

backward" output. I ended up with a 2 dimensional array (matrix) that made the code quick 

and easy. 

The binary values above convert to 0,1,3,2 or 0,2,3,1 depending on the direction. This pattern 

repeats 

continuously. By using the current value from the encoder to index one dimension of the 

array and the 

previous value to index the other dimension you can quickly get a -1, 0, or +1 output. My 

array looks 

like this. 

As you can see, if the value has not changed then the output is 0. 

The sequence of 0, 1, 3, 2 gives an output of -1. 

The sequence of 0, 2, 3, 1 gives an output of +1. 

X represents a disallowed state and would most likely occur if the encoder outputs are 

changing too 

quickly for your code to keep up. Normally this should not happen. In my code I put a 2 here. 

When I 

get an output of 2 I know that I got an error, perhaps due to electrical noise or my code being 

too slow. 

If you replace X with 0 then the disallowed state will be ignored. 

In my Arduino code I make this a 1 dimensional array. that looks like this: 

int QEM [16] = {0,-1,1,2,1,0,2,-1,-1,2,0,1,2,1,-1,0}; // Quadrature Encoder Matrix 

To read the array my index is: Old * 4 + New 

So my code reads like this: 

Old = New; 

New = digitalRead (inputA) * 2 + digitalRead (inputB); // Convert binary input to decimal 

value 

Out = QEM [Old * 4 + New]; 

Good luck and enjoy. 


