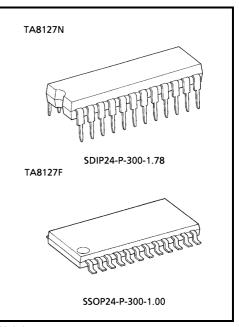
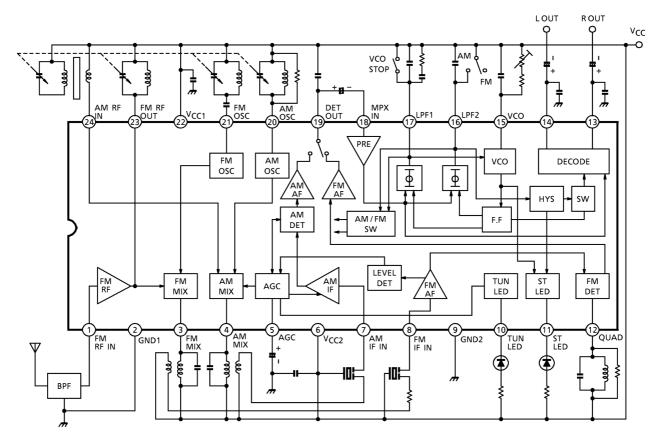
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic


TA8127N,TA8127F

3V AM / FM 1chip Tuner IC

TA8127N and TA8127F are the AM / FM 1chip tuner ICs, which are designed for portable radios and 3V headphone radios.


Features

- Built-in
 - FM F / E, AM / FM IF and FM MPX
 - AM detector coil and IF coupling condenser are not needed.
- Compact package TA8127N: Shrink DIP 24 pin (1.78mm pitch) TA8127F: Mini flat packge 24 pin
- Operating supply voltage range V_{CC} = 1.8~7.0V (Ta = 25°C)

Weight SDIP24-P-300-1.78: 1.2g (typ.) SSOP24-P-300-1.00: 0.31 (typ.)

Block Diagram

Explanation Of Terminals

Pin No.	ltem	Internal Circuit	DC Voltage (V) (at no Signal)		
1	FM-RF IN	FM-RF OUT 23	0	0.7	
2	GND1 (GND for RF stage)		0	0	
3	FM MIX	V _{CC1} ⁽²⁾	3.0	3.0	
4	AM MIX	V _{CC1} (2) (4) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	3.0	3.0	
5	AGC (AM AGC)	IF AGC S RF AGC GND2 9	0	0	
6	V _{CC2} (V _{CC} for IF / MPX stage)	—	3.0	3.0	
7	AM IF IN	V _{CC2} 6 7 7 6 9 6 9	3.0	3.0	
8	FM IF IN	V _{CC2} 6 G B GND2 9	3.0	3.0	

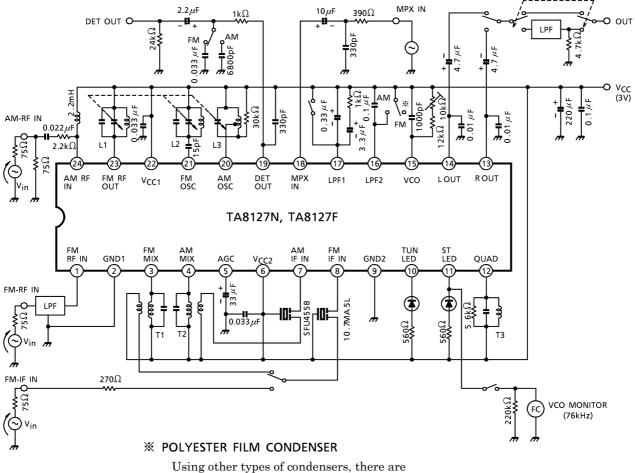
Pin No.	Item	Internal Circuit	DC Voltage (V) (at no Signal)		
1 11 10.		internal enoug	AM	FM	
9	GND2 (GND for IF / MPX stage)	-	0	0	
10	TUN LED (tuning LED)	V _{CC2} 6 (1) GND2 (3)	_	_	
11	ST LED (stereo LED)	76kHz (1) GND2 (9)	_	_	
12	QUAD (FM QUAD. Detector)		3.0	3.0	
13 14	R–OUT (R–ch output) L–OUT (L–ch output)	V _{CC2} 6	1.0	1.0	
15	VCO	V _{CC2} 6 DC AMP 13 GND2 9	2.5	2.5 (VCO stop mode)	
16	LPF2 • LPF terminal for synchronous detector • Bias terminal for AM / FM SW circuit $V_{16} = V_{CC} \rightarrow AM (VCO \text{ stop})$ $V_{16} = OPEN \rightarrow FM$	GND2 (9)	3.0	2.2 (VCO stop mode 2.7)	
17	LPF1 • LPF terminal for phase detector • VCO stop terminal V ₇ = V _{CC} →VCO stop	GND2 3	2.7	2.2	

Pin No.	Item	Internal Circuit	DC Voli (at no s	tage (V) Signal)
1 11 10.	icin	internal Great	AM	FM
18	MPX IN	(18) m k m k m k m k m k m k m k m k m k m	0.7	0.7
19	DET OUT	V _{CC2} 6 AM O FM O FM O GND2 9 (a) LOW→FM, HIGH→AM (b) LOW→AM, HIGH→FM	1.5	1.2
20	AM OSC	V _{CC1} 20 V _{CC1} 20 Mix GND1 2	3.0	3.0
21	FM OSC		3.0	3.0
22	V _{CC1} (V _{CC} for RF stage)	—	3.0	3.0
23	FM RF OUT	Cf. Pin(1)	3.0	3.0
24	AM RF IN	V _{CC1} ⁽²⁾ ⁽²⁾ ⁽³⁾ ⁽⁴⁾	3.0	3.0

Maximum Ratings (Ta = 25°C)

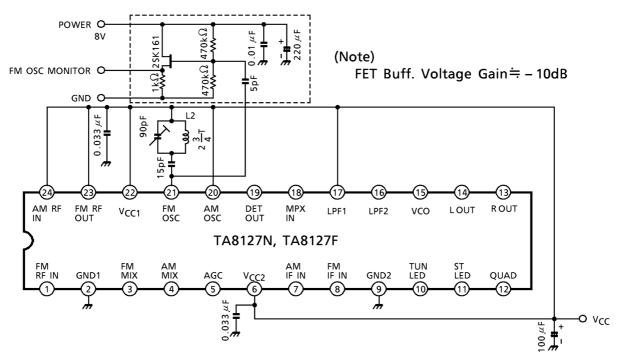
Characteris	stic	Symbol	Rating	Unit
Supply voltage		V _{CC}	8	V
LED current		I _{LED}	10	mA
LED voltage		V _{LED}	8	V
Rower dissinction	TA8127N	PD	1200	mW
Power dissipation	TA8127F	(Note)	400	11100
Operating temperature		T _{opr}	-25~75	°C
Storage temperature		T _{stg}	-55~150	°C

Note: Derated above 25°C in the proportion of 9.6mW / °C for TA8127N and of 3.2mW / °C for TA8127F.


Electrical Characteristics

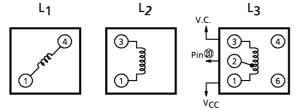
Unless Otherwise Specified, Ta = 25°C, V_{CC} = 3V, F / E: f = 83MHz, f_m = 1kHz FM IF: f = 10.7MHz, Δf = ±22.5kHz, f_m = 1kHz AM: f = 1MHz, MOD = 30%, f_m = 1kHz MPX: f_m = 1kHz

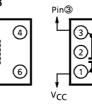
Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit	
Suppl	y current	I _{CC} (FM)		V _{in} = 0, FM mode	—	13.2	20.0	mA	
Suppi	ycurrent	I _{CC (AM)}	1	V _{in} = 0, AM mode	—	8.4	13.5	III/A	
F/E	Input limiting voltage	V _{in (lim.)}	1	 3dB limiting 	—	10.0	_	dBµV EMF	
1 / L	Local OSC voltage	V _{OSC}	2	f _{OSC} = 72.3MHz	—	105	_	mV _{rms}	
	Input limiting voltage	V _{in (lim.)} IF	1	– 3dB limiting	40	46	53	dBµV EMF	
	Rcovered output voltage	V _{OD}	1	V _{in} = 80dBµV EMF	55	80	110	mV _{rms}	
FM IF	Signal to noise ratio	S / N	1	V _{in} = 80dBµV EMF	_	70	_	dB	
	Total harmonic distortion	THD	1	V _{in} = 80dBµV EMF	_	0.4	_	%	
	AM rejection ratio	AMR	1	V _{in} = 80dBµV EMF	—	32	_	dB	
	Lamp on sensitivity	VL	1	I _L = 1mA	45	51	56	dBµV EMF	
	Gain	Gv	1	V _{in} = 26dBµV EMF	40	70	110		
	Recovered output voltage	V _{OD}	1	V _{in} = 60dBµV EMF	55	80	110	mV _{rms}	
AM	Signal to noise ratio	S / N	1	V _{in} = 60dBµV EMF	_	42	_	dB	
	Total harmonic distortion	THD	1	V _{in} = 60dBµV EMF	—	1.0	_	%	
	Lamp on sensitivity	VL	1	IL = 1mA	20	25	30	dBµV EMF	
Pin(19) output resistance			1	FM mode	—	0.75	_		
FIII(18		ance R ₁₉		AM mode	_	12.5	_	kΩ	

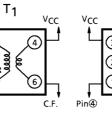

Characteristic		Symbol	Test Cir– cuit	Test Co	Test Condition		Тур.	Max.	Unit			
	Input resistance		R _{IN}	—	-	_	—	24	_	kΩ		
	Output resista	ince	R _{OUT}	—	-	_	—	5		K12		
	Max. Compos signal input vo		V _{in (max.)} stereo	1	L+R = 90%, P = 10% f _m = 1kHz, THD = 3%		—	350		mV _{rms}		
	Separation				L+R =	f _m = 100Hz	—	42	_	dB		
			Sep	1	135mV _{rms}	f _m = 1kHz	35	42	_			
					P = 15mV _{rms}	f _m = 10kHz	_	42	_			
	Total harmonic distortion	Monaural	THD (monaural)	1	V _{in} = 150mV _{rms}		—	0.2	-	%		
MPX		Stereo	THD (stereo)		L+R = 135mV _{rms} , P = 15mV _{rms}		_	0.2	_			
	Voltage gain		G _{V (MPX)}	1	V _{in} = 150mV _{rms}		-5	-3	-1	dB		
	Channel bala	nce	С. В.	1	V _{in} = 150mV _{rms}		-2	0	2	uБ		
	Stereo lamp	On	V _{L (ON)}	1	Pilot input		—	8	16	mV _{rms}		
	sensitivity	Off	V _{L (OFF)}		Pilot input	Pilot input		6		rms		
	Stereo lamp hysteresis		V _H	1	To LED turn of LED turn on	f from	_	2	_	mV _{rms}		
	Caputure range		C. R.	1	P = 15mV _{rms}		P = 15mV _{rms}		—	±3	_	%
	Signal to nois	e ratio	S / N	1	V _{in} = 150mV _{rm}	_	70	_	dB			

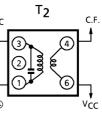
Test Circuit 1

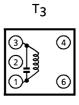
Using other types of condensers, there are some cases that the MPX does not do normal stereo action at high temperature or low temperature.

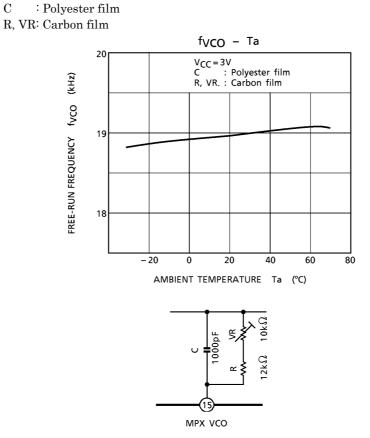

Test Circuit 2




Coil Data


Coil No.	Test L	L	CO	0.			Turns		Wire	Reference	
COILINO.	Freq. (Hz)	(µH)	(pF)	Q _O	1–2	2–3	1–3	1–4	4–6	(mmø)	Reference
L ₁ FM RF	100M	_	١	100		_		$2\frac{1}{2}$		0.5UEW	(S) 53T-037-202
L ₂ FM OSC	100M			100		_	$2\frac{3}{4}$	_		0.5UEW	(S) 0258–244
L ₃ AM OSC	796k	288	_	115	13	73	_	_	_	0.08UEW	(S) 4147–1356–038
T ₁ FM MIX	10.7M	—	75	100	_	—	13	—	2	0.1UEW	(S) 2153-414-041
T ₂ AM MIX	455k	—	180	120		—	180	—	15	0.08UEW	(S) 2150-2162-165
T ₃ FM DET	10.7M	_	47	165		_	16	_		0.09UEW	(S) 2153-4095-122

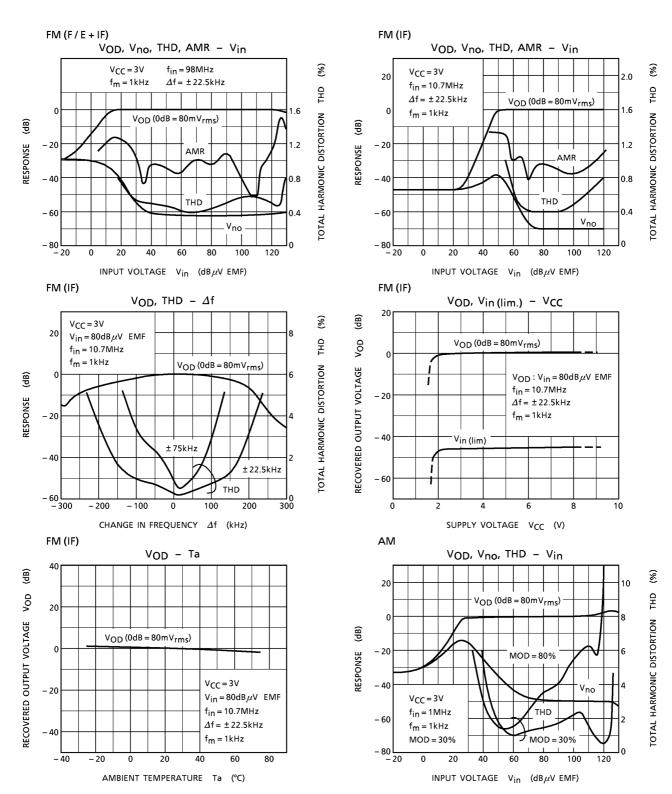

(S): SUMIDA electric CO., LTD

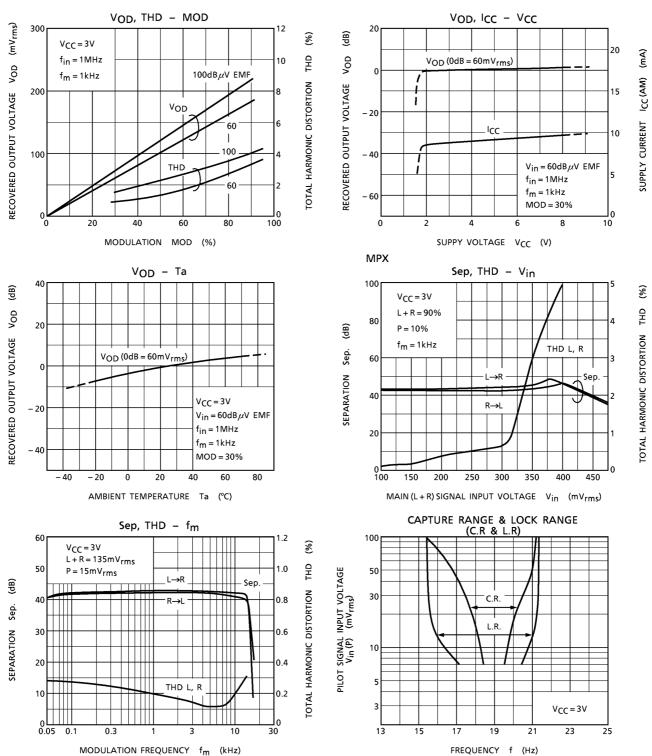


Hint On Use Of TA8127N And TA8127F

External parts of MPX VCO

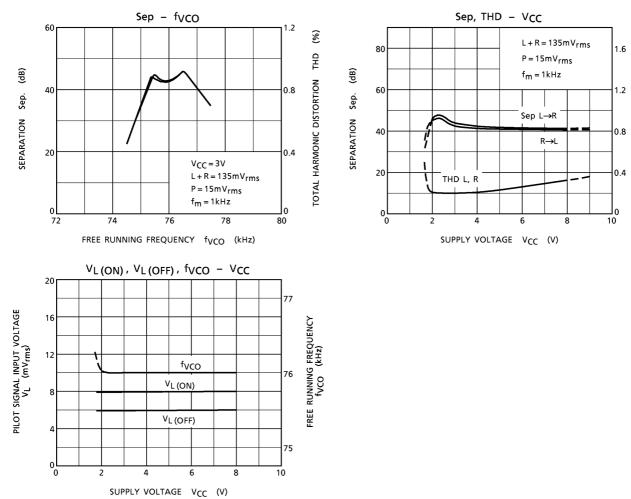
 \mathbf{C}


(1) Temperature characteristic of MPX VCO free -run frequency. The temperature characteristic of MPX VCO is shown in the diagram as below. Select one with a better temperature characteristic (C, R and VR.) in use. We recommend,

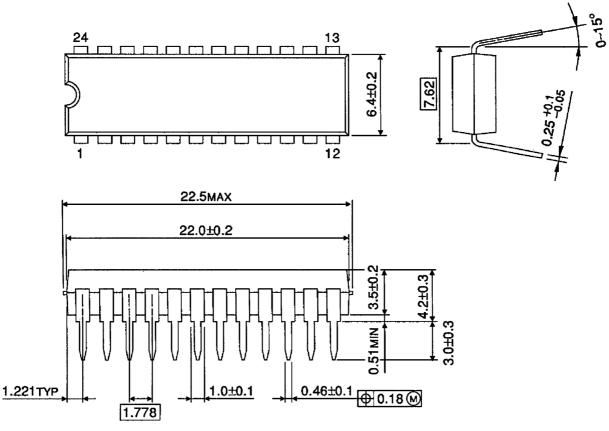


(2) Value of the external parts

We recommend to set up these value as below.


 $R = 12k\Omega$ $VR = 10k\Omega$ C = 1000 pF

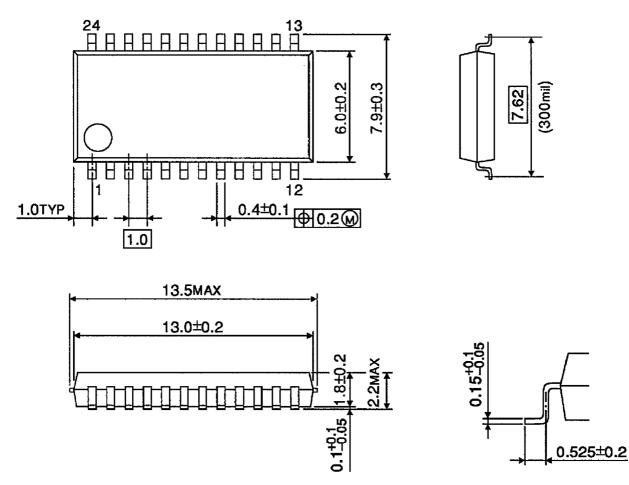
<u>TOSHIBA</u>


TOTAL HARMONIC DISTORTION THD (%)

Package Dimensions

SDIP24-P-300-1.78

Unit : mm



Weight: 1.2g (typ.)

Package Dimensions

SSOP24-P-300-1.00

Unit : mm

Weight: 0.31g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.